Vertical-crystalline Fe-doped β-Ni oxyhydroxides for highly active and stable oxygen evolution reaction

Extra Form
author Kwangyeol Lee
journal Matter
Homepage http://nanolab.korea.ac.kr/
?

단축키

Prev이전 문서

Next다음 문서

ESC닫기

크게 작게 위로 아래로 댓글로 가기 인쇄

2018 (1).gif

김병윤

(제1저자, 기초과학연구원)

 

 

 

The layered transition metal oxyhydroxides have received increasing interest owing to the efficient energy conversion performance and material stability during the oxygen evolution reaction (OER). In particular, Fe-doped NiOOH has shown record-high OER performance in alkaline media among various catalysts. Theoretically, undercoordinated facets including Ni4+, exposed at the edges of NiOOH, were predicted to perform highly active OER. Therefore, here we suggest a rational catalyst design, a vertical-crystalline β-Fe/NiOOH layer built on faceted Fe/Ni nanocrystals, which exposes Ni4+ sites and could improve the OER performance dramatically. Electrochemical OER tests recorded the overpotential of 210 mV at a current density of 10 mA cm−2GEO and stable operation for 5 days. In situ/operando and density functional theory studies revealed that the Ni valence cycle between +2 and +4 assisted by Fe dopant is the key engine that greatly accelerates OER kinetics and that the vertical-crystalline β-Fe/NiOOH layers on Ni octahedra are stable under harsh OER conditions.

Cover_MATT756 (1).jpg

 

 

https://www.sciencedirect.com/science/article/abs/pii/S2590238521004483?dgcid=author


Articles

1 2 3 4 5 6 7 8 9