Eco-Friendly Solvent-Processed Fullerene-Free Polymer Solar Cells with over 9.7% Efficiency and Long-Term Performance Stability

Extra Form
author Dong Hoon Choi
journal Adv. Energy Mater. 2017 (DOI: 10.1002/aenm.201700566)
Homepage http://fpl.korea.ac.kr/index2.asp
?

단축키

Prev이전 문서

Next다음 문서

ESC닫기

크게 작게 위로 아래로 댓글로 가기 인쇄

A wide-bandgap polymer, (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(2,5-(methyl thiophene carboxylate))]) (3MT-Th), is synthesized to obtain a complementary broad range absorption when harmonized with 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC). The synthesized regiorandom 3MT-Th polymer shows good solubility in nonhalogenated solvents. A film of 3MT-Th:ITIC can be employed for forming an active layer in a polymer solar cell (PSC), with the blend solution containing toluene with 0.25% diphenylether as a nonhalogenated additive. The corresponding PSC devices display a power conversion efficiency of 9.73%. Moreover, the 3MT-Th-based PSCs exhibit excellent shelf-life time of over 1000 h and are operationally stable under continuous light illumination. Therefore, methyl thiophene-3-carboxylate in 3MT-Th is a promising new accepting unit for constructing p-type polymers used for high-performance nonfullerene-type PSCs.



TOC.png


http://onlinelibrary.wiley.com/doi/10.1002/aenm.201700566/abstract



Articles

1 2 3 4 5 6 7 8 9