Deep learning for development of organic optoelectronic devices: Efficient prescreening of hosts and emitters in deep-blue fluorescent OLEDs

Extra Form
author Dong Hoon Choi and Sungnam Park
journal npj computational materials
Homepage https://ultrafastspec.wixsite.com/spark
?

단축키

Prev이전 문서

Next다음 문서

ESC닫기

크게 작게 위로 아래로 댓글로 가기 인쇄

 

 

The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, which are key factors in optoelectronic devices, must be accurately estimated for newly designed materials. Here, we developed a deep learning (DL) model that was trained with an experimental database containing the HOMO and LUMO energies of 3,026 organic molecules in solvents or solids and was capable of predicting the HOMO and LUMO energies of molecules with the mean absolute errors of 0.058 eV. Additionally, we demonstrated that our DL model was efficiently used to virtually screen optimal host and emitter molecules for organic light-emitting diodes (OLEDs). Deep-blue fluorescent OLEDs, which were fabricated with emitter and host molecules selected via DL prediction, exhibited narrow emission (bandwidth = 36 nm) at 412 nm and an external quantum efficiency of 6.58%. Our DL-assisted virtual screening method can be further applied to the development of component materials in optoelectronics.

 
 
toc-.png

 

 

 

DOI :  https://doi.org/10.1038/s41524-022-00834-3

 
 

Articles

1 2 3 4 5 6 7 8 9 10