Framework materials with atomic precision for sustainable future
Abstract:
The demand for high-performance framework materials to address the ongoing global and energy challenges
is significant. To expedite the discovery of these innovative framework materials, we must adopt new approaches in design, synthesis, and characterization practices.1-7 In this context, data science is poised to play a crucial role in propelling materials discovery towards sustainable future. Among the notable advancements, Metal-Organic Frameworks (MOFs) stand out as a new class of promising transformative materials, targeting applications in carbon neutrality. Despite the fact that MOFs offer virtually limitless combinations of metal nodes and
organic building blocks, optimizing these materials to attain peak performance is a sophisticated endeavor,
challenging both computational and synthetic chemists.
In light of these serious challenges, there is a growing trend toward digitizing chemical insights.1 The advanced digital archives could greatly accelerate the process of identifying groundbreaking future materials. In this
presentation, we show detailed case studies, particularly emphasizing Zeolitic Imidazolate Frameworks (ZIFs),
Zirconium-based MOFs and Metal-Organic Polyhedra (MOPs). Leveraging comprehensive databases-actively
utilizing both hypothetical and experimentally confirmed entries-we elucidate their pivotal role in identifying
synthetic targets, and further align with specific application goals for sustainable future.
References
1. Kim, J.; Nam, D.; Cho, H.J.; Cho, E.; Sivanesan, D.; Cho, C.; Lee, J.; Kim, J.; Choe, W.* ”Up-down approach for
expanding the chemical space of metal-organic frameworks” Nat. Synth. 2024,
https://doi.org/10.1038/s44160-024-00638-x.
2. Lee, S.; Jeong, H.; Jung, S.; Kim, Y.; Cho, E.; Nam, J.; Yang, D.C.; Oh, H.; Choe, W.* “Data-Driven Search
Algorithm for Discovery of Synthesizable Zeolitic Imidazolate Frameworks” JACS Au, 2024, in revision.
3. Nam, J.; Jin, E.; Abylgazina, L.; Getzschmann, J.; Xue, W.; Lee, H.K.; Oh, H.; Moon, H.R.; Henke, S.; Schneemann, A.*; Choe, W.* “Pore Structure Modulation in Kirigamic Zeolitic Imidazolate Framework” Angew. Chem. Int. Ed.
2024, in print.
4. Lee, J.; Park, D.; Jin, E.; Lee, S.; Lee, J.; Oh, H.*; Choe, W.* “Programmable Merged-Net Porphyrinic Metal-Organic Frameworks for Water Sorption” Adv. Funct. Mater. 2024, 2413200.
5. Lee, S.; Lee, S.; Kwak, Y.; Yousaf, M.; Cho, E.; Moon, H.R.; Cho, S.J.*;Park, N.*; Choe, W.* “Parsimonious Topology Based on Frank-Kasper Polyhedra in Metal-Organic Frameworks” JACS Au, 2024, 4, 2539-2546.
6. Nam, J.; Kim, S.; Jin, E.; Lee, S.; Cho, H.J.; Min, S.K.*; Choe, W.* “Zeolitic Imidazolate Frameworks as Solid-State Nanomachines” Angew. Chem. Int. Ed. 2024, 63, e202404061.
7. Jin, E.; Lee, I. S.; Yang, D. C.; Moon, D.; Nam, J.; Cho, H.; Kang, E.; Lee, J.; Noh, H.-J.; Min, S. K.*; Choe, W.* “Origamic Metal-Organic Framework Toward Mechanical Metamaterial” Nat. Commun. 2023, 9, 7938.
8. Nam, J; Cho, C.; Jung, S.; Kim, Y.; Hong, Y.; Lee, S.; Oh, H.; Choe, W.* “High-Entropy Zeolitic Imidazolate Frameworks for Dynamic Hydrogen Isotope Separation” Angew. Chem. Int. Ed. 2024. Accepted.