Silver Telluride Colloidal Quantum Dot Solid for Fast Extended Shortwave Infrared Photodetector

Extra Form
author Kwang Seob Jeong
journal ADVANCED SCIENCE
Homepage https://kwangsjeong.wixsite.com/ksjlab-koreauniv
?

단축키

Prev이전 문서

Next다음 문서

ESC닫기

크게 작게 위로 아래로 댓글로 가기 인쇄

엄소영 박사.jpg

엄소영 박사

 

Extended shortwave infrared (eSWIR) photodetectors that employ solution-processable semiconductors have attracted attention for use in applications such as ranging, night vision, and gas detection. Colloidal quantum dots (CQDs) are promising materials with facile bandgap tunability across the visible-to-mid-infrared wavelengths. However, toxic elements, such as Hg and Pb, and the slow response time of CQD-based IR photodetectors, limit their commercial viability. This article presents a novel eSWIR photodetector that is fabricated using silver telluride (Ag2Te) CQDs. Effective thiolate ligand exchange enables a lower trap density and improved carrier mobility in CQD solids. Furthermore, a vertical p-n photodiode architecture with a favorable energy-level landscape is utilized to facilitate charge extraction, resulting in a fast, room-temperature-operable, and toxic-element-free CQD photodetector. The best eSWIR Ag2Te CQD photodetector exhibits a fall time of 72 ns, representing the fastest response time among all prior CQD-based eSWIR photodetectors, including those containing toxic elements, such as Pb and Hg.

 

TOC_엄소영박사.jpg

 

https://onlinelibrary.wiley.com/doi/10.1002/advs.202407453


Articles

1 2 3 4 5 6 7 8 9 10