Probing Distinct Fullerene Formation Processes from Carbon Precursors of Different Sizes and Structures

Extra Form
author Hugh I Kim
journal Anal. Chem. 2016, Article DOI: 10.1021/acs.analchem.6b02076
Homepage https://sites.google.com/site/hughkimgroup/
?

단축키

Prev이전 문서

Next다음 문서

ESC닫기

크게 작게 위로 아래로 댓글로 가기 인쇄

Fullerenes, cage-structured carbon allotropes, have been the subject of extensive research as new materials for diverse purposes. Yet, their formation process is still not clearly understood at the molecular level. In this study, we performed laser desorption ionization-ion mobility-mass spectrometry (LDI-IM-MS) of carbon substrates possessing different molecular sizes and structures to understand the formation process of fullerene. Our observations show that the formation process is strongly dependent on the size of the precursor used, with small precursors yielding small fullerenes and large graphitic precursors generally yielding larger fullerenes. These results clearly demonstrate that fullerene formation can proceed via both bottom-up and top-down processes, with the latter being favored for large precursors and more efficient at forming fullerenes. Furthermore, we observed that specific structures of carbon precursors could additionally affect the relative abundance of C60 fullerene. Overall, this study provides an advanced understanding of the mechanistic details underlying the formation processes of fullerene.


TOC.jpg


http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b02076


Articles

3 4 5 6 7 8 9 10