Research Highlight

Atachment
첨부 '1'
Extra Form
author Kwangyeol Lee
journal ACS Catalysis
Homepage http://nanolab.korea.ac.kr/
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄

Understanding catalytic-conversion determinants will blueprint an efficient electrocatalyst design for electrochemical nitrogen reduction. In metal chalcogenide-based catalysts, metal-site nitrogen adsorption initiates nitrogen fixation, and successive hydrogen supply from nearby chalcogen sites hydrogenates the nitrogen to ammonia. However, surface geometry-dependent reaction kinetics are rarely studied because the reaction is very fast. Here, we investigate the relationship between catalyst geometrical features and their electrochemical nitrogen reduction kinetics using surface atomic geometry-regulated copper sulfide (Cu1.81S) nanocatalysts with exposed (100)- and (010)-type facets for flat and zigzag planes, respectively. The exposed facet densities of the nanocatalysts are varied via their aspect ratios. Nanocrystals with highly exposed (010)-type surfaces exhibit the best nitrogen reduction kinetics. Density functional theory calculation reveals that the protruded Cu and S atomic arrangement on the zigzag (010)-type surface promotes N2 adsorption and facilitates proton transfer from near the S site to *N2 at the Cu site, thus fast-forwarding electrochemical nitrogen reduction.

 

 

홍용주_1.jpg

 

 

https://pubs.acs.org/doi/10.1021/acscatal.2c03680?cookieSet=1


  1. Resonant Raman-Active Polymer Dot Barcodes for Multiplex Cell Mapping

    Resonance Raman spectroscopy is an efficient tool for multiplex imaging because of the narrow bandwidth of the electronically enhanced vibrational signals. However, Raman signals are often overwhelmed by concurrent fluorescence. In this stud...
    Read More
  2. Decoding the Roles of Amyloid-β (1-42)'s Key Oligomerization Domains toward Designing Epitope-Specific Aggregation Inhibitors

    Fibrillar amyloid aggregates are the pathological hallmarks of multiple neurodegenerative diseases. The amyloid-β (1-42) protein, in particular, is a major component of senile plaques in the brains of patients with Alzheimer’s di...
    Read More
  3. Flattening bent Janus nanodiscs expands lattice parameters

    Nanoscale lattice parameter engineering is a potentially powerful tool for tailoring the electronic properties of nanomaterials. The nascent strain in juxtaposed hetero-interfaces of nanocrystals was recently shown to substantially affect t...
    Read More
  4. Directing the surface atomic geometry on copper sulfide for enhanced electrochemical nitrogen reduction

    Understanding catalytic-conversion determinants will blueprint an efficient electrocatalyst design for electrochemical nitrogen reduction. In metal chalcogenide-based catalysts, metal-site nitrogen adsorption initiates nitrogen fixation, an...
    Read More
  5. High Seebeck Coefficient Achieved by Multinuclear Organometallic Molecular Junctions

    This paper describes thermoelectric property of molecular junctions incorporating multinuclear ruthenium alkynyl complexes that comprise Ru(dppe)2 (dppe = 1,2-bis(diphenylphosphino)ethane) fragments and diethylnyl aromatic bridging ligands ...
    Read More
  6. Thermopower in Transition from Tunneling to Hopping

    The Seebeck effect of molecular junction in a hopping regime or tunneling-to-hopping transition remains uncertain. This paper describes the Seebeck effect in molecular epitaxy films (OPIn where n = 1 – 9) based on imine condensation b...
    Read More
  7. An Activity-Based Fluorescent Probe for Imaging Fluctuations of Peroxynitrite (ONOO-) in the Alzheimer's Disease Brain

    Peroxynitrite (ONOO-) plays a critical role in Alzheimer's disease (AD), and the association between ONOO- and AD is inexplicit. To reveal the ONOO- influxes in AD brains, an activatable activity-based fluorescence probe Rd-DPA3 was rat...
    Read More
  8. Deep learning for development of organic optoelectronic devices: Efficient prescreening of hosts and emitters in deep-blue fluorescent OLEDs

    The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, which are key factors in optoelectronic devices, must be accurately estimated for newly designed materials. Here, we developed a deep lea...
    Read More
  9. Photocatalytic Superoxide Radical Generator that Induces Pyroptosis in Cancer Cells

    In this study, we show that a photocatalytic superoxide radical (O2−•) generator, NI-TA, triggers pyroptosis in cancer cells. NI-TA was designed to take advantage of an intramolecular triplet-ground state splitting energy modulat...
    Read More
  10. Direct C–H metallation of tetrahydrofuran and application in flow

    The direct C–H metallation of tetrahydrofuran (THF) to generate α-anionic THF is one of the most straightforward methods for the the generation and utilization of α-anionic THF. Here we develop a reaction for the direct me...
    Read More
  11. Functionalization of Diamine-Appended MOF-Based Adsorbents by Ring Opening of Epoxide: Long-Term Stability and CO2 Recyclability under Humid Conditions

    Although diamine-appended metal-organic framework (MOF) adsorbents exhibit excellent CO2 adsorption performance, a continuous decrease in long-term capacity during repeated wet cycles remains a formidable challenge for practical application...
    Read More
  12. High Gravimetric and Volumetric Ammonia Capacities in Robust Metal–Organic Frameworks Prepared via Double Postsynthetic Modification

    Ammonia is a promising energy vector that can store the high energy density of hydrogen. For this reason, numerous adsorbents have been investigated as ammonia storage materials, but ammonia adsorbents with a high gravimetric/volumetric amm...
    Read More
  13. Li-ion Intercalation, Rectification, and Solid Electrolyte Interphase in Molecular Tunnel Junctions

    This paper describes Li-ion intercalation into pyrenyl terminated self-assembled monolayer (SAM) on gold, inspired from graphite anode in Li-ion battery, and its effect on tunneling performance in molecular junction incorporating the SAM. A...
    Read More
  14. Thermopower of Molecular Junction in Harsh Thermal Environments

    Molecular junctions can be miniaturized devices for heat-to-electricity conversion application, yet these operate only in mild thermal environments (less than 323 K) because thiol, the most widely used anchor moiety for chemisorption of act...
    Read More
  15. Microfluidics-Assisted Synthesis of Hierarchical Cu2O Nanocrystal as C2-Selective CO2 Reduction Electrocatalyst

    Copper-based catalysts have attracted enormous attention due to their high selectivity for C2+ products during the electrochemical reduction of CO2 (CO2RR). In particular, grain boundaries on the catalysts contribute to the generation of va...
    Read More
  16. Chemical Fields: Directing Atom Migration in the Multiphasic Nanocrystal

    Atoms in a bulk solid phase are usually trapped to fixed positions and can change their position only under certain conditions (e.g., at a melting point) due to the high energy barrier of migration between positions within the crystal latti...
    Read More
  17. Electronic Mechanism of In Situ Inversion of Rectification Polarity in Supramolecular Engineered Monolayer

    This paper describes polarity inversion in molecular rectification and the related mechanism. Using supramolecular engineered, ultrastable binary mixed self-assembled monolayer (SAM) composed of organic molecular diode (SC11BIPY) and inert ...
    Read More
  18. Direct observation of protein structural transitions through entire amyloid aggregation processes in water using 2D-IR spectroscopy

    Amyloid proteins that undergo self-assembly to form insoluble fibrillar aggregates have attracted much attention due to their role in biological and pathological significance in amyloidosis. This study aims to understand the amyloid aggrega...
    Read More
  19. Harnessing GLUT1-Targeted Pro-oxidant Ascorbate for Synergistic Phototherapeutics

    Despite extensive efforts to realize effective photodynamic therapy (PDT), there is still a lack of therapeutic approaches concisely structured to mitigate the major obstacles of PDT in clinical applications. Herein, we report a molecular s...
    Read More
  20. DNA-Damage-Response-Targeting Mitochondria-Activated Multifunctional Prodrug Strategy for Self-Defensive Tumor Therapy

    We report a novel multifunctional construct, M1, designed explicitly to target the DNA damage response in cancer cells. M1 contains both a floxuridine (FUDR) and protein phosphatase 2A (PP2A) inhibitor combined with a GSH-sensitive linker. ...
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 Next
/ 10