Research Highlight

Atachment
첨부 '1'
Extra Form
author Minhaeng Cho, Kyungwon Kwak, Hugh I. Kim
journal The Journal of Physical Chemistry Letters
Homepage https://www.hughkimlab.com/
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄
?

단축키

Prev이전 문서

Next다음 문서

크게 작게 위로 아래로 댓글로 가기 인쇄

 

We explored the influence of D2O on the fibrillation kinetics and structural dynamics of amyloid intrinsically disordered proteins (IDPs), including α-synuclein, amyloid-β 1–42, and K18. Our findings revealed that fibrillation of IDPs was accelerated in D2O compared to that in H2O, exhibiting faster kinetics in contrast to the structured protein, insulin. Structural investigations using electrospray ionization ion mobility mass spectrometry and small-angle X-ray scattering combined with molecular dynamics simulations demonstrated that IDPs did not show significant structural changes that could influence accelerated fibrillation in D2O. Umbrella sampling of protein protofibrils verified that an increased level of hydrogen bonding of D2O and enhanced hydrophobic interactions stabilized β-sheet structured fibrils in D2O. These findings indicate that stabilizing β-sheet fibrils and a more hydrophobic microenvironment in D2O result in enhanced and faster fibrillation of IDPs. The study highlights the importance of considering D2O’s differential impact on protein interactions when conducting structural and kinetic analyses, particularly for native peptides and proteins.

 

240812_TOC_5th_box_final.jpg

 

 


  1. Silver Telluride Colloidal Quantum Dot Solid for Fast Extended Shortwave Infrared Photodetector

    엄소영 박사 Extended shortwave infrared (eSWIR) photodetectors that employ solution-processable semiconductors have attracted attention for use in applications such as ranging, night vision, and gas detection. Colloidal quantum dots (CQDs) ...
    Read More
  2. Accelerated Amyloid Aggregation Dynamics of Intrinsically Disordered Proteins in Heavy Water

    We explored the influence of D2O on the fibrillation kinetics and structural dynamics of amyloid intrinsically disordered proteins (IDPs), including α-synuclein, amyloid-β 1–42, and K18. Our findings revealed that fibrillat...
    Read More
  3. Long-Range Charge Transport in Molecular Wires

    Long-range charge transport (LRCT) in molecular wires is crucial for the advancement of molecular electronics but remains insufficiently understood due to complex transport mechanisms and their dependencies on molecular structure. While sho...
    Read More
  4. Generative Deep Learning-Based Efficient Design of Organic Molecules with Tailored Properties

    Innovative approaches to design molecules with tailored properties are required in various research areas. Deep learning methods can accelerate the discovery of new materials by leveraging molecular structure–property relationships. I...
    Read More
  5. Ru2P/Ir2P Heterostructure Promotes Hydrogen Spillover for Efficient Alkaline Hydrogen Evolution Reaction

    Efficient and durable electrocatalysts toward alkaline hydrogen evolution reaction (HER) are of great significance for the widespread application of anion-exchange membrane water electrolyzer (AEMWE). Numerous single-phase catalysts, such a...
    Read More
  6. Spatiotemporal Nitric Oxide Modulation via Electrochemical Platform to Profile Tumor Cell Response

    Nitric oxide (NO) is a gaseous molecule intricately implicated in oncologic processes, encompassing the modulation of angiogenesis and instigating apoptosis. Investigation of the antitumor effects of NO is currently underway, necessitating ...
    Read More
  7. Lutetium Texaphyrin–Celecoxib Conjugate as a Potential Immuno-Photodynamic Therapy Agent

    안주성 석박사통합과정 Immuno-photodynamic therapy (IPDT) has emerged as a new modality for cancer treatment. Novel photosensitizers can help achieve the promise inherent in IPDT, namely, the complete eradication of a tumor without recurrenc...
    Read More
  8. High Hydrogen Storage in Trigonal Prismatic Monomer-Based Highly Porous Aromatic Frameworks

    Hydrogen storage is crucial in the shift toward a carbon-neutral society, where hydrogen serves as a pivotal renewable energy source. Utilizing porous materials can provide an efficient hydrogen storage solution, reducing tank pressures to ...
    Read More
  9. Boc Protection for Diamine-Appended MOF Adsorbents to Enhance CO2 Recyclability under Realistic Humid Conditions

    Among the various metal–organic framework (MOF) adsorbents, diamine-functionalized Mg2(dobpdc) (dobpdc4– = 4,4-dioxidobiphenyl-3,3′-dicarboxylate) shows remarkable carbon dioxide removal performance. However, applying diam...
    Read More
  10. Double-Walled Tubular Heusler-Type Platinum–Ruthenium Phosphide as All-pH Hydrogen Evolution Reaction Catalyst Outperforming Platinum and Ruthenium

    Nanostructured ionic compounds have driven major technological advancements in displays, photovoltaics, and catalysis. Current research focuses on refining the chemical composition of such compounds. In this study, a strategy for creating s...
    Read More
  11. Seebeck Effect in Molecular Wires Facilitating Long-Range Transport

    The study of molecular wires facilitating long-range charge transport is of fundamental interest for the development of various technologies in (bio)organic and molecular electronics. Defining the nature of long-range charge transport is ch...
    Read More
  12. Early onset diagnosis in Alzheimer’s disease patients via amyloid-β oligomers-sensing probe in cerebrospinal fluid

    Amyloid-β (Aβ) oligomers are implicated in the onset of Alzheimer’s disease (AD). Herein, quinoline-derived half-curcumin-dioxaborine (Q-OB) fluorescent probe was designed for detecting Aβ oligomers by finely tailoring ...
    Read More
  13. Thermopower in Underpotential Deposition-Based Molecular Junctions

    Underpotential deposition (UPD) is an intriguing means for tailoring the interfacial electronic structure of an adsorbate at a substrate. Here we investigate the impact of UPD on thermoelectricity occurring in molecular tunnel junctions bas...
    Read More
  14. Eco-friendly solution-processed narrowband OLEDs using non-halogenated aliphatic solvent systems

    In general, fabricating multilayer structures in solution-processed organic light-emitting diodes (OLEDs) presents challenges owing to the potential degradation of the initial film during subsequent processing steps. Furthermore, these devi...
    Read More
  15. Self-Aggregating Tau Fragments Recapitulate Pathologic Phenotypes and Neurotoxicity of Alzheimer's Disease in Mice

    In tauopathy conditions, such as Alzheimer's disease (AD), highly soluble and natively unfolded tau polymerizes into an insoluble filament; however, the mechanistic details of this process remain unclear. In the brains of AD patients, o...
    Read More
  16. Ultranarrow Mid-infrared Quantum Plasmon Resonance of Self-doped Silver Selenide Nanocrystal

    The infrared quantum plasmon resonance (IR QPR) of nanocrystals (NCs) exhibits the combined properties of classical and quantum mechanics, potentially enabling unprecedented optics. However, research on the development of localized surface ...
    Read More
  17. Molecular Thermoelectricity in EGaIn-Based Molecular Junctions

    Understanding the thermoelectric effects that convert energy between heat and electricity on a molecular scale is of great interest to the nanoscience community. As electronic devices continue to be miniaturized to nanometer scales, thermor...
    Read More
  18. Perovskite Nanocrystals Protected by Hermetically Sealing for Highly Bright and Stable Deep-Blue Light-Emitting Diodes

    Metal–halide perovskite nanocrystals (NCs) have emerged as suitablelight-emitting materials for light-emitting diodes (LEDs) and other practicalapplications. However, LEDs with perovskite NCs undergoenvironment-induced and ion-migratio...
    Read More
  19. The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts

    It has been over twenty years since the linear scaling of reaction intermediate adsorption energies started to coin the fields of heterogeneous and electrocatalysis as a blessing and a curse at the same time. It has established the possibili...
    Read More
  20. Resonant Raman-Active Polymer Dot Barcodes for Multiplex Cell Mapping

    Resonance Raman spectroscopy is an efficient tool for multiplex imaging because of the narrow bandwidth of the electronically enhanced vibrational signals. However, Raman signals are often overwhelmed by concurrent fluorescence. In this stud...
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 Next
/ 10